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Abstract

For internal rotation in 3-fold tops, the internal axis system (lAS) has been
a great convenience because the vibrational angular momentum is constant
and is directed along a single axis. A procedure for finding an IAS for the
general asymmetric top-asymmetric frame case is given. This procedure is an
existence proof that such an axis system can be found. Once the IAS is found,
details will be given on how the Matthieu equation can be solved and how
the results can be clescribed  as a Fourier series. A useful alternative to the
IAS is an axis system obtained by rotating away from the IAS by a constant
amount (independent of the torsional angle) so ZM to position the frame in a
more convenient orientation. For this rotated internal axis system (RIAS),  a
Matthieu equation can also be used as a basis except that the kinetic energy
for the Matthieu solution only contains contributions from the a conlponent
of the vibrational angular momentum. Expectation values for other opera-
tors including contributions from the L component of the vibrational angular
momentum are deferred to the full diagonalization  of the rotation-vibration
Hamiltonian.
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I. INTRODUCTION

l’he choice of rotating axes in the presence of large amplitude vibrational motions has
a significant influence on the ease of understanding the vi bratioll–rotatioll  spectra. III an
earlier paper [1], the effects of a change of axis system on expressions for the rotation-
vibration Harniltonian were derived. The IIanliltonian  can be written ill the form

H = #@p – pTGcTp – p7’cGp + P7’CGCTP  “+ PT/L[’ + V , (1)

where p is a vector of N. vibrational momenta, P is the rotational angular momentum
vector, G is the inverse mass of the vibration (a NV x N. matrix), C is the vibrational
angular momentum coupling coefilcient  (a 3 x Nv matrix) , p is the inverse of the moment
of inertia tensor, and V is the sum of the potential energy and pseudo potential terms
depending on the determinant of G and p. For non-periodic large amplitude motions, a
reduced axis system (RAS)  can be found that minimizes vibrational angular momentum.
It was recognized that periodic motions, such as encountered in molecules with internal
rotation, presented special problems because the vibrational angular momentum cannot be
forced to zero by an appropriate choice of axis system.

For internal rotation in 3-fold tops, the internal axis system (IAS) has been a great
convenience because the vibrational angular momentum (with NV = 1 ) for the internal
rotation coordinate ~ is constant ,i. e. independent of ~, and is c{irectcd along a single
axis [2]. In such a single top system, the axis of K quantization can be chosen to be along
along this axis and the Matthieu equation can be solved as a function of A’ using the G
and V dependent parts of Eq. (1). In the usual notation of internal rotation, the matrix
element of G corresponding to the internal rotation is called ~ ancl tile corresponding matrix
element of C is callecl p. In the early literature, an additional non-periodic transformation
is performed to make all the elements of C equal to zero. In a subsequent application of
Floquet’s  theorem, the Hamiltonian  is transformed back into a form where the bounciary
conditions are periodic. While this is a useful set of transformations for solving a clifferential
equation, it has little utility when solving the Harniltioian  using matrix methocls  since the
matrix Harniltonian  is identical to the case where C is constant and directed along a single
axis. However, it is still frequently useful to use the periodic symmetries of the Matthieu
equation to expand the energy (or individual elements of the Hamiltonian) in a Fourier series
in 27r(pK – 0)/3.

A detailed prescription for finding the IAS has not been cleveloped  for the case when
neither the internal rotation top or the molecular frame have any symmetry. In the more
general case, it would be useful if an IAS existecl  in which C is constant and directed along
a single axis, Liu and Quade  have used an approximate IAS in which tile zero-order Fourier
coefhcient of C is made zero by a non-periodic coordinate transformation, but the higher
Fourier c.oefiicients  of C are not zeroed by the transformation [3]. In the next section, an
algorithm for finding an IAS will be given in which all higher Fourier coefficients of C can he
made zero. Since this algorithm will always converge to an IAS, tile algorithm col]stitlltcs  a
proof that the IAS exists. l’he use of Fourier series will be then briefly be discussed.

This K dependent basis obtained from the Matthieu equation can be USCCI  to SOIVCI
the full J and K dependent Hamiltonian  in several ways. In the internal axis method
(IAM), as described by Wooc{s  [4], the molecular axes of the IIamiltonian  are not coil~cident
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with the axis of quantization for the Matthieu  equation , and the Matthieu energies  are
transformed to the molecular axes using the Wigner D operators. With this approach, the
A’ quantum number in the Matthieu energies is merely a parameter which is not relatecl  to
the K quantum number labeling rotational basis functions, except through the Wigner D
operators. An alternative approach, which has also been designated as an IAM or the rho
axis method [5], is to use the IAS as the molecular axis system and to use the Matthieu
eigenfunctions as the rotational basis. This second approach will not work generally for
multiple internal rotors, and has the added disadvantage that the expectation values of the
inverse inertial tensor, p, are not diagonal. Nonetheless, this approach is appealing for its
simplicity and has been usecl  extensively [6].

In many situations, the requirement that the IAS axis be the axis of K cluantization
is inconvenient. A useful alternative to the IAS is an axis system obtainecl by rotating
away from the IAS by a constant amount (independent of the torsional angle) so as to
position the frame in a more convenient orientation. For this rotated internal axis system
(RIAS),  a Matthieu equation can also be used as a basis except that the kinetic energy for
the Matthieu solution only contains contributions from the a component of the vibrational
angular momentum. Discussion of use of the RIAS will be given below.

In the past there have been a number of alternative approaches for the case when neither
the top or the frame have any symmetry. One approach is to use an axis system, such as
tile principal axis system, which simplifies some other part of the rotational IIanliltonian
but leaves all projections of C non-zero and a function of the vibrational coordinate [7].
A second approach is to use a more optimum axis system but to use oILly a A’ = O basis.
Such approaches work best in the limit of high barriers and low vibration state, but have
diminished utility when the torsional barrier is lower or when higher torsional states need to
be considered. The methods outlined in this paper allow all Coriolis  effects to be inclucled
in the basis functions and should be helpful in a wider variety of situations.

II. FINDING THE lAS

Before describing how to find the IAS, it is useful to describe the effect of a rotation on
C when N. = 1. For a rotataion around the z axis,

Cl = (7Z cos # + (7V sin #

C; = Cy cos~ – C= sin~ (2)

C: = C. + d(j/dr

where ~ is the internal rotation angle. Because CZ is modified by such a ~-depenclent  trans-
formation, the general solution to find the IAS involves three non-linear ordinary  differential
equations in two angular unknowns with periodic boundary conditions in ~. While nu-
merical techniques exist for solving such differential equations, it is not obvious that the
solution exists or is unique. However, there is a simpler algorithm that converges rapidly to
a solution.

Before we start the solution, assume that the three components of C have been calculated
for a set of equally spaced ~ values in an arbitrary axis frame. A frame that is fixed with
respect to a set of three atoms in the tnolecule  is convenient, since the coordinate derivatives
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with respect to ~ required to calculate C and G can be easily found. To facilitate calculation
of derivatives and integrals, the C will be expanded in a Fourier series in ~. This series is
rapidly convergent since the structure can usually be expressed as a very low-order series.
It is preferable if ~ is sampled with an odd number of points so that the real ancl imaginary
parts of the highest-order Fourier coefficient are both defined.

The following three steps in the algorithm are applied iteratively until C. is not a function
of ~ and all CZ and CV are zero:

(1) Find a ~-independent coordinate transformation that takes the average  values of C
and transforms them to the new z axis. This can be done by rotating by ~ around the .z axis
to make ~z zero, followed by rotating by 0 around the z axis to make ‘~v zero. “1’he phase
of both rotations will be chosen such that the cosine is positive. For n-fold tops with n > 2,
this step is all that is needed to find the IAS because C will be constant and independent
of ~. The transformation in this step will reduce the average value of C: + C;.

(2) Find a rotation # around the z axis such that the resulting C: is constant. If CZ~ is
the k-th Fourier coefficient of C., then

N
@.. –mr – ~ Re [C.~  exp(ih)/~~], (3)

k=l

where m is the nearest integer to CZO. The values of ~ are then used to transform CZ
and Cu. The new constant value of C= is p = Czo – m and has a magnitude < 1/2. The
transformation in this step leaves C: + C; invariant.

(3) Two rotations are applied: first a rotation of a around z, followecl  by a rotation of /?
around y, The size of these rotations is chosen to make C: and C; zero tc] first order in o
and ~. Because C= is a constant at this point, Fourier coefficients of different orcier  do not
mix. The expressions for the Fourier coefficients for a and /? in terms of the coefficients of
CZ and C’y are

[

ikczk + pCgk
cl=&ie p2_k2+c exp(ik~)

k=o 1

@=~Re
[

ikCYk — pczk . 1P2 _ kz + ~ Wi2kT) , (4)
k=o

where c is a small number, e.g. 10-10, used to prevent divergence for k=O when p is very
small. Values of Q and ~ are obtained for each sample point in ~. If any a or @ is greater
than J = 0.125 in magnitude, then all a and ~ are scaled so that the maximum magnitude
is J. The Fourier series in o and ~ are then used to obtain da/d~ and d~/d~ and C is
transformed using Eq. (2) with cyclic permutation of the axes and with a and ~ substituted
for ~. The transformations in this step will reduce the average value of C: + C;, even when
a and ~ are constrained by J. The higher-order effects of these transformations are to create
small non-zero values for ~= and ~V. In addition, C= will no longer be constant.

Since Eq. (4) makes Cz and CY zero to first order in the rotation angles, the average value
of C: + C; becomes smaller quadratically with each iteration. Usually, only 4 iterations are
neecled  to reduce this average tc) 10-12. Therefore, the convergence properties assure that
the IAS exists. The precision of the transformations used to find the IAS is primarily limited
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by the use of Fourier series to perform the integration and differentiation of the rotations.
In practice, 19 sample points (N = 9) gives results accurate to 10-7.

When the IAS has been fount], it may be convenient to perform an additional 10tiLtiOIl

about the z axis with # = mr,  where m is the nearest integer to (p. — p) and p. is the value
of p from the first iteration. This extra rotation will preserve the original frame and axis
identities. If this final rotation is not made, the final value of p will have a magnitude s
1/2. Finally, if the resulting p is negative, it can be made positive by rotating around the z
or y axis by n.

I I I .  FOURIER SERIES

Having found an IAS, it is now possible to solve a Matthieu equation of the form

H = (p – plqlqp  – pK) + v . (5)

Note that both F’ and V can be periodic functions of ~, but p is a constant. Eq. (5) can
be solved by matrix methods using a free rotor basis, exp(im~),  for each desired value of
pK. If there is n-fold symmetry to both F’ and V, then the non-zero matrix elements of H
will connect basis functions with Am equal to a multiple of n. In addition, the Hamiltonian
is invariant under the transformation m ~ m — rno and pK a pK — 772., where m. is a
multiple of n. An elegant way of articulating this transformation symmetry is to express the
eigenvalues  as a Fourier series in 27r(pK  – a)/n, where a = O, 1, “ o “ n – 1. The eigenvectors
can also be expressed in a similar series, except for a phase factor that need not be periodic.
For simplicity, assume that F’ and V are even functions of ~ so that the Hamiltonian  matrix
in the free rotor basis is real. If the Hamiltonian  is real, the eigenvectors  can be chosen to
have a phase that makes them real.

When calculating expectation values for operators that change K, e.g. I’a l~.b }’6, the
phases of the eigenvectors neecl  to be selected carefully so that such expectation values do
not change sign abruptly with small changes in ph’. A simple phase choice that generally
produces well-behaved expectation values is to multiply the eigenvector Iv, a, p]{ > by +1
so that the overlap < v, a, OIV,  o,pK > is positive.

Then, using the example of the Dab operator,

[(27rik K’ + K“
xRe~ < v’/D.blv”  >k e x p  — P 2 ––~

k n )1 (6)

where the Fourier coefficients, < v’lD.blv”  >k, are obtained by evaluating

i_A

[
~ <  v’, o,p(~’  –  ;)l Dablv’’,  o,/@’ +  ;) >

-t(-l)A < v’, O, P(l{+ ;)[Dab[v’’, o,p(/i – ;) >
1

(7)

at equally spaced intervals in pl~’ between —n/2 and n/2. If the operator is a cosil~e series
in T, A = O, while if it is a sine series, then A = 1. If the operator is a cc)mbination of even
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ancl odd contributions, then the even and odd parts S11OUICI be talc.ulatcd separately. This
phase convention is used to make (7) real ancl to lnake (6) Hermitian.  “1’his  exalnplc can
be applied to any other AA’ = +q operator by replacing A’+ 1/2 with K + q/2  in (7). It
can also be applied to transition dipoles or hyperfine  components by replacing f’a~)b with  an
appropriate direction cosine operator. Note that in all cases, the explicit rotational operator
(such as P.lj) is not included in the calculation of the Fourier series, even though its matrix
elements are K dependent.

The choice used here for the Fourier series assures that the operators are Hermitian and
that the Fourier coefllcients  reflect the symmetry of the Hamiltonian.  Operators that are
even in ~ will have a cosine series for v’ = v“ , while operators that are odd in ~ will be zero
for v’ = v“. Matrix elements that are off-diagonal in v will be represented by either a sine
or cosine series, based on whether the wave functions at p~ = u are even or odcl  functions
Oi r.

The importance of the Fourier series expansion of energies and other operators is that
the Matthieu basis need not be recalculated for every value of K. In addition, the Fourier
expansion shows the periodic nature of the dependence of these operators on K, which can
be important in understanding the spectrum. An important aspect of these Fourier series
is that they converge rapidly even for moderate barriers to internal rotation ancl that the
convergence improves with increasing barrier height.

IV. USES OF AN ALTERNATIVE AXIS SYSTEM

When there are several large amplitude vibrational motions a molccu]e, it is often incon-
venient to use the IAS. For example, if a molecule has two or more internal rotors, the IAS
for the two rotations will not usually coincide. Even if the second vibration is non-periodic,
maintaining the IAS over the motion of the second vibration will lead to large vibrational
angular momentum for the second vibration. An alternative is to use the formalism of
Woods [4] with a more convenient axis sytem. A second simpler alternative is to apply a
fixed rotation from the IAS that is independent of the internal rotation coordinate. This
new axis system will be called the rotated internal axis system (RIAS).  l’he effect of this
rotation will be to create new constant values of pb = CV and p= = CT. For simplicity
in the following discussion, assume that pC = O, although extension to the general case is
straightforward. The parts of the Hamiltonian  including these new terms will be excluded
from the Matthieu basis function calculation, but will be included in the final solution of
the full Hamiltonian.

The solution of the Matthieu equation is ic]entical  to the IAS except that p = p. = (72.
l’he Fourier series of most expectation values can also  be calculated using the I AS procedure,
using p. in the Fourier series. However, care has to be taken with the new terms that involve
p, because the expectation value of p is not periodic. Fortunately, the quantity (p – pt,~()  is
periodic and the Hamiltonian  can be written in the form



where Ho is the Hamiltonian used to calculate the Matthieu basis. The the expectation
values of H’ can be calculated using Eq. (6) with appropriate substitution of operators.
Since F is an even function and since the matrix elements of p are real, the matrix elements
of H’ are real and A = O. For v’ = v“, H’ will be sine series, since p is oclcl  in ~. Such
matrix elements become quite small as the barrier height is increased, but are not zero. For
matrix elements of H’ that connect vibrational states with different parity in ~ at pl{ = a,
the Fourier expansion will be cosine series. Such matrix elements can be quite substalitial
even as the barrier height is increased.

The effect of the linear pb terms on the final Harniltonian are significant, but generally
benign. Usually the matrix elements of H’ couple states that are well separated in energy
relative to the size of the interaction. This RIAS approach has been used successfully to
fit the spectrum of dimethyl ether [8], in which the b axis is aligned with the 2-fold axis of
symmetry. The approach can also be useful in heavy frame molecules where it is convenient
to make the RIAS coincident with an axis system that makes the inertial tensor diagonal
for one reference structure. For example, OH internal rotation in ethanol can be treated
in a RIAS for which the inertial axis system is diagonal for the trans conformer. Because
the frame is so heavy with respect to the H atom in the top, the inertial tensor is almost
cliagonal for the gauche conformers as well. Nonetheless, the presence of these }’@ l’b terms
has a significant effect on the gauche states and on the interaction between the tram and
gauche+ states. In addition, the IAS for the methyl internal rotation can be converted to a
RIAS that is coincident with that for the OH torsion.

V. CONCLUSIONS

The techniques that were formerly available symmetric internal rotors are now available
for the general case of an internal rotor with both an asymmetric top ancl an asymmetric
frame. Specifically, a procedure now exists for finding an axis system in which the vibrational
angular momentum is constant and directed along a single axis. The significance of the IAS
is that a Matthieu basis can be used that diagonalizes  all the parts of the Hamiltonian
associated with the internal rotation problem and that exhibits all the periodic synlnle-
try in pK – o. A calculation approach has also been outlined for situations where it is
not convenient to have all the vibrational angular momentum aligned with the axis of K
quantization.

The approaches developed here should be very useful for a variety of internal rotation
problems including analysis of the spectra of molecules with partially cleuterated  methyl
groups and molecules with intrinsically asymmetric internal rotation SUC1l  as alc.ollols.
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